Подавление шумов и фильтрация при обработке изображений капельных и волновых течений.



Noise suppression and filtering when processing images of drop and wave flows.

Using the example of the formation of capillary waves on the surface of a molten metal induced by the merging of a drop of liquid galinstan in the impact mode, an attempt is made to construct a systematic approach to filtering images of drop and wave flows. The technique is based on assessing the statistical parameters of noise with the selection of filters that best suit a certain type of noise, followed by the signal-to-noise ratio estimation.
The paper provides a review of the literature on both various types of filters and image processing in fluid mechanics.

capillary waves, drop impact, image processing, median filter, histogram, signal-to-noise ratio.


Том 25, выпуск 2, 2024 год



На примере образования капиллярных волн на поверхности расплавленного металла, индуцированных слиянием капли жидкого галинстана в импактном режиме, дана попытка построения систематизированного подхода к фильтрации изображений капельных и волновых течений. Методика основана на оценке статистических параметров шума с подбором фильтров, которые наилучшим образом подходят под определенный тип шума, с последующей оценкой отношения «сигнал/шум».
В работе дан обзор литературы как по типам фильтрам, так и по обработке изображений в механике жидкостей.

капиллярные волны, импакт капли, фильтрация изображений, медианный фильтр, гистограмма, отношение «сигнал/шум».


Том 25, выпуск 2, 2024 год



1. John C. Russ, F. Brent Neal (2016). The image processing handbook. CRC Press. https://doi.org/10.1201/b18983
2. Rafael C. González, Richard Eugene Woods (2008). Digital image processing. Prentice Hall. p. 354. ISBN 978-0-13-168728-8.
3. Jitendra R. Raol, M. S. Multi-sensor data fusion with MATLAB. Ramaiah Institute of Technology CRC Press, Inc., 2010 ISBN: 978-1-4398-0003-4
4. Tania Stathaki (2008). Image fusion: algorithms and applications. Academic Press. p. 471. ISBN 978-0-12-372529-5.
5. Amailland et. al. Numerical simulations of acoustic imaging in hydrodynamic tunnel with model adaptation and boundary layer noise reduction. 19th International Conference on acoustics, Sound and vibration ICASV 2017 at Melbourne, Australia
6. Yang, J., Breault, R. W., & Rowan, S. L. Applying image processing methods to study hydrodynamic characteristics in a rectangular spouted bed. Chemical Engineering Science, 188, 238–251. (2018). doi:10.1016/j.ces.2018.05.057
7. K.F. Tamrin & B. Rahmatullah | (2016) A review on noise suppression and aberration compensation in holographic particle image velocimetry, Cogent Physics, 3:1, 1142819, DOI: 10.1080/23311940.2016.1142819
8. Sudheer, K., Panda, R.. Digital image processing for determining drop sizes from irrigation spray nozzles. Agricultural Water Management, 45(2), 159–167. (2000).
doi:10.1016/s0378-3774(99)00079-7
9. B. Davide, B. Volfango. Measuring Fluid Interfaces, Corners and Angles from High-speed Digital Images of Impacting Drops. Journal of Flow Visualization and Image Processing, V.28 (1). pp. 1-19. (2020). DOI: 10.1615/JFlowVisImageProc.2020032697
10. J. Yee, A. Yamanaka, Y. Tagawa. Image features of a splashing drop on a solid surface extracted using a feedforward neural network. Physics of Fluids, 34 (1): 013317 (2022).
https://doi.org/10.1063/5.0077050
11. Чашечкин Ю.Д. Прохоров В. Е. Гидродинамика удара капли: короткие волны на поверхности венца. Доклады Академии Наук, 2013, т.451, №1, с. 41-45.
DOI: 10.7868/S0869565213190109
12. Abramoff, M.D., Magalhaes, P.J., Ram, S.J. "Image Processing with ImageJ". Biophotonics International, volume 11, issue 7, pp. 36-42, 2004.
13. N. Kumar, M. Nachamai. Noise removal and filtering techniques used in medical images. Oriental journal of computer science and technology. ISSN: 0974-6471, 2017, Vol. 10, No. (1): P.103-113
14. Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med. 1997 Nov;38(5):852-7.
Erratum in: Magn Reson Med. 2004 Jul;52(1):219. PMID: 9358462; PMCID: PMC2570034.
doi: 10.1002/mrm.1910380524.
15. P. B. Dasgupta. Analytical comparison of noise reduction filters for image restoration using SNR estimation. International Journal of Computer Trends and Technology (IJCTT) V17(3):121-124, 2014. ISSN:2231-2803. DOI:10.14445/22312803/IJCTT-V17P123
16. Wolfram Research, Inc., Mathematica, Version 13.0, Champaign, IL (2021).
17. Lv, H., Fu, S., Zhang, C., & Zhai, L. Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary. 2018. Laser Physics Letters, 15(5), 055401.
doi:10.1088/1612-202x/aaaeb0
18. Zurbenko, I. G., & Smith, D. Kolmogorov-Zurbenko filters in spatiotemporal analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 10(1), e1419. (2017). doi:10.1002/wics.1419
19. Shekhar, C. (2016). On simplified application of multidimensional Savitzky-Golay filters and differentiators. doi:10.1063/1.4940262
20. Geeta Hanji, M.V. Latte, K. Varsha. An ameliorated detection statistic for adaptive mask median filtration of heavily noised digital images. ICTACT journal on image and video processing, 2015, vol. 06, issue 02. DOI: 10.21917/ijivp.2015.0167
21. Hilts, M., & Jirasek, A. (2007). Adaptive mean filtering for noise reduction in CT polymer gel dosimetry. Medical Physics, 35(1), 344–355. doi:10.1118/1.2818742
22. Thakor, N. V., & Zhu, Y.-S. (1991). Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Transactions on Biomedical Engineering, 38(8), 785–794. doi:10.1109/10.83591
23. Fisher, R., Perkins, S., Walker, A., and Wolfart, E. Spatial Filters - Laplacian of Gaussian. (2003). https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
24. Чашечкин Ю. Д., Ильиных А. Ю., Хайирбеков Ш. Х. Тонкая структура распределения вещества составной капли в принимающей жидкости в режиме формирования всплеска//Физико-химическая кинетика в газовой динамике. 2023. Т.24, вып. 5. http://chemphys.edu.ru/issues/2023-24-5/articles/1073/ http://doi.org/10.33257/PhChGD.24.5.1073
25. Чашечкин Ю.Д. Эволюция тонкоструктурного распределение вещества свободно падающей капли в смешивающихся жидкостях // Известия РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 67 – 77. DOI: 10.1134/S0001433819020026
26. УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. Сайт: http://www.ipmnet.ru/uniqequip/gfk/#equip.